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� Functional principle

� Design Problems
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Turbo Molecular Pump

� Function
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� Challenges
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Vacuum Pumps 
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Screw Vacuum Pump

Screw vacuum pumps are used since the 80s

� Fore vacuum pump � compressing against 

atmosphere

� High pumping capacity

� Inlet pressure from 10-3 mbar to 1000 mbar

� Two rotating screw without contact

� Dry pump � no contamination of gas or oil

� High energy efficiency due to inner 

compression ratio



64th IUVSTA Workshop           6Leinsweiler,   17.05.2011

Screw Vacuum Pump - Functional Principal

� Gas enters the pump on the suction side

� Tooth cavities form chambers that transport 

the gas volume to the exhaust

� Volume of cavities may decrease �

volumetric compression

� Backward gas flow through clearances �

isochoric compression

� Gas leaves pump on discharge side

Vacuum performance of a screw pump is 

mainly defined by

� Forward transport volume flow

� Backward clearance flow

Gas flow from molecular over transient to 

viscous flow regime
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Screw Vacuum Pump - Design Goals

Technical goals in the design of screw 
vacuum pumps

� Vacuum performance

� Pumping speed

� Ultimate pressure

� Energy efficiency

� Low maximum power consumption

� Low average power consumption

� Safe operation in different applications

� Controlled thermal behavior
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Cell Model for screw pumps

Simulation of the thermodynamic process of 
displacement machines with many cells

Approach:

trapped volumes are cells with homogenous gas 
conditions regarding

pressure

temperature

mixture

clearances are connections between cells

calculation of mass flow by time step model

transport

leakage through clearances
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Cell Model for screw pumps

Input data:

rotor geometry

clearance height

inlet and exhaust pressure and 

temperature

rotor speed

cell temperature

gas ballast or

purge gas flow

Simulation results:

pumping speed

power consumption

cell pressure

bearing load

clearance leakage flow

gas ballast flow
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Cell volume and volume curve
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CFPCFPCFPCFP clearance flank pitch and CFT CFT CFT CFT clearance flank tip
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CBT CBT CBT CBT clearance blow hole tail 
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Clearance area for constant clearance height
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Connection between cells (NOS=1)
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Calculation of leakage flow through clearances
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Simulated pumping speed of SP250 @ 60Hz, cold start

Variation of discharge side housing gap heights +- 0,02 mm
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Simulated pumping speed of SP250 @ 60Hz, cold start

Variation of suction side housing gap heights +- 0,02 mm
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Validation of the simulation tool

Validation of the simulation tools by experiments

� Measurement of the operating behaviour of a SP250

� in cold state � with cold clearances (known)

� pumping speed

� pressure measurement at 8 different stages

� rotor speed: 50 Hz, 60 Hz

(40 Hz, 30 Hz)

� pin = 0,001 .. 1000 mbar

� automated

Aim is the comparison of

� pumping speed curves

� compression curves

in simulation and measurement
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Position of sensor bores in pump housing

Lage der Druckmessstellen
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Cell movement during SP250 compression measurement (10°)
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Cell movement during SP250 compression measurement (30°)
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Cell movement during SP250 compression measurement (60°)
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Cell movement during SP250 compression measurement (90°)
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Cell movement during SP250 compression measurement (120°)



64th IUVSTA Workshop           28Leinsweiler,   17.05.2011

Cell movement during SP250 compression measurement (150°)
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Cell movement during SP250 compression measurement (180°)
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Cell movement during SP250 compression measurement (210°)
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Cell movement during SP250 compression measurement (240°)
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Cell movement during SP250 compression measurement (270°)
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Cell movement during SP250 compression measurement (300°)
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Cell movement during SP250 compression measurement (330°)
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Cell movement during SP250 compression measurement (350°)
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Pressure distribution SP250, 30 Hz

Simulation vs. Measurement 20s after cold start
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Pressure distribution SP250, 40 Hz

Simulation vs. Measurement 20s after cold start
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Pressure distribution SP250, 50 Hz

Simulation vs. Measurement 20s after cold start
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Pressure distribution SP250, 60 Hz

Simulation vs. Measurement 20s after cold start
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Simulation of screw vacuum pumps with a cell model

The simulation my means of cell model

� allows the calculation of the compression cycle in the pump

� by calculation of leakage through clearances

� and making up the balance between forward transport and backward leakage

� gives a good accuracy regarding

� pumping speed,

� pressure distribution and

� compression power.

� can be used for the variational design of screw pumps
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Opportunities in the simulation of screw pumps

The following parts of the simulation can be improved:

� Thermal simulation of the process and the pump parts

� Heat Transfer between the gas and the surrounding surfaces

� Calculation of gas temperature during compression

� FEM simulation for the pump parts

� Recalculation of clearance heights on the basis of simulated pump deformation

� Simulation of mixed gas flows in the clearances

� Empirical flow models limit the simulation capability to certain gases

� Theoratical / physical models would increase simulation capabilities

� Instationary simulation of inlet and exhaust flow
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Thermal behaviour of screw pump housing
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DRYVAC Sprinter 650 S

Rotor temperature distribution 200 – 975 mbar @ 120 Hz
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Vacuum Pumps 
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Turbo Molecular Pump (TMP)

� Molecular pumping principals were 

described 1913 by W. Gaede

� Turbo molecular pump was invented 

1958 by W. Becker

� Inlet pressure normally < 0.01 mbar

� Exhaust pressure normally < 0.5 mbar

� Higher exhaust pressures possible with 

Holweck or Siegbahn stages

� Fore vacuum pump necessary to 

compress to atmosphere, e.g.

� Rotary vane pump

� Diaphragm pump

� Screw pump

� Gas flow is mainly molecular but may 

reach also the transient flow regime
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Turbo Molecular Pump – Design Goals

Technical goals in the design of TMP:

� Optimization of Vacuum Performance
� Pumping speed
� Kompression
� For different gases

� High Lifetime
� Thermal Household
� Mechanical stress

� Flexible solutions for the customer
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Test Particle Method – TMP Modelling

Step 1: Generating Boundary Conditions

� The blade geometry is generated in,

� 2 dimensions only, therefore particle movement 

down the blade is not considered

� At the RMS radius only.  Initial models were 

calculated at multiple radii along the blade, but 

it was discovered that using RMS obtains 

similar results.

� Both machined and pressed blade profiles can be 

modelled with variable angle, height and thickness.

Gas outlet side

Gas Inlet side

Gas inlet side

Gas outlet side
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Test Particle Method – TMP Modelling

Knudsen Cosine Law
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Step 2: Tracking Particle Movement

� For each particle traveling off a surface or 

starting at the inlet or outlet,

� The initial velocity is randomly generated 

using the Maxwell-Boltzmann molecular 

speed distribution.

� The initial vector angle is randomly 

generated using the Knudsen Cosine Law.

� If a particle contacts a moving blade the 

blade velocity and vector is added.

� The particle is tracked as it travels through 

the turbo pump until it exits either at the 

top or bottom of the pump.
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Test Particle Method – TMP Modelling

Step 3: Calculating Transmission Probability
� The overall gas transmission probability is 

calculated for the turbo mechanism and 
defined as,
� Gas transmission probability

from inlet to outlet (M12)
� Gas transmission probability

from outlet to inlet (M21)

Step 4: Calculating Speed & Compression
� From the gas transmission probability the 

pump performance can be calculated,
� Smax – Maximum pumping speed (at K = 1)
� Kmax – Maximum compression (at S = 0)

M

TR
V

VnJ

o

⋅

⋅⋅
=

⋅⋅=

π

8

4

1

Average Thermal 
Velocity

Gas Arrival Rate
(per unit area)

n is the number density

21

12
max

M

M

A

A
K

outlet

inlet •=

)2112(
4

max MAMA
V

S outletinlet ⋅−⋅⋅=

Inlet

Outlet

M
1
2

M
2
1

Reference
Empirical and numerical calculations in two dimensions for predicting the 

performance of a single stage turbomolecular pump

Schneider, T. N. Katsimichas, S. de Oliveira, C. R. E. Goddard, A. J. H.



64th IUVSTA Workshop           50Leinsweiler,   17.05.2011

2E35E2800l/s911l/sHydrogen

945l/s

750l/s

Model

Pumping Speed

990l/s

730l/s

Test Data

1E41E4Helium

3E67E10Nitrogen

Test DataModel

CompressionClass 1000 Class 1000 Class 1000 Class 1000 

ISO160ISO160ISO160ISO160

Accuracy

~3 to 13%

5E16E128l/s31l/sHydrogen

37l/s

49l/s

Model

Pumping Speed

36l/s

48l/s

Test Data

3E24E2Helium

1E51E7Nitrogen

Test DataModel

CompressionClass 50Class 50Class 50Class 50

ISO 63ISO 63ISO 63ISO 63

Accuracy

~2 to 10%

5E23E2200l/s187l/sHydrogen

227l/s

252l/s

Model

Pumping Speed

261l/s

225l/s

Test Data

6E36E3Helium

4E83E10Nitrogen

Test DataModel

CompressionClass 300Class 300Class 300Class 300

ISO 100ISO 100ISO 100ISO 100

Accuracy

~7 to13%

Modelling Validation



64th IUVSTA Workshop           51Leinsweiler,   17.05.2011

Pumping Speed Comparison Model vs Actual
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Modelling Results

� The model assumes molecular flow in all pressure regions hence the values of pumping 

speed and compression do no decrease as inlet pressure increases.

� Model is only suitable in the molecular flow region!!!
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Performance Simulation of TMPs
Viscous Flow Model

Simulation of TMP Performance with a 

viscous flow model

� 2 dimensional geometry (RMS)

� Stationary flow

� Velocity profile depending on pressure 

difference (Hagen-Poiseuille)

� Pressure dependent viscosity

� Forward flow reduced by clearance 

flows in reverse direction
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Performance Simulation with viscous flow model

Simulation of the vacuum performance

� Shows generally good accuracy

� Allows a fast simulation of multiple design 

variations
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Validation of TMP Performance Simulation

Experimental Validation

� Measurement of single / double stages

� Pressure measurement directly before and 

behind stages

� Variation of clearances and blade parameters
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Molecular gas flow simulation through stationary parts

Simulation tool MCFlow for molecular

gas flow through stationary parts

� Test particle Monte Carlo method (3D)

� Part geometry from CAD system (ProE)

� Grouping of surfaces in CAD system

� Export of surface geometry to MCFlow

� Specification of inlet and outlet

� Calculation of throughput probabilities

� Gas type independent

� 10.000 particle take ~5s

� Result: Throughput probabilities

� Visualization of flow paths

� Implementation in C++
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Performance Simulation of Turbo Molecular Pumps

A turbo molecular pumping (TMP) mechanism 
performance can be modelled

� in the molecular flow region by using a Test 
Particle Monte Carlo method to compute the 
gas transmission probabilities through the 
mechanism.

� In the viscous to transient flow regime by using 
a viscous flow model (Hagen-Poisseuille) with 
adopted viscosity.

Modelling accuracy is acceptable for all gas 
types.
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Challenges in the simulation of Turbo Molecular Pumps

The following parts of the simulation can be improved:

� One (combined) flow model to simulate all flow regimes
molecular � transient � viscous

� Thermal simulation of the process and the pump parts

� Heat Transfer between the gas and the surrounding surfaces

- Housing

- Rotor Blades

- Holweck stage

� Calculation of gas temperature during compression

� FEM simulation for the pump parts

� 3D – model including the influences of complex flow channels inside the pump

� Simulation of mixed gas flows


